Prompt selection with reinforcement learning in an AT&t call routing application

نویسندگان

  • Charles Lewis
  • Giuseppe Di Fabbrizio
چکیده

Reinforcement Learning (RL) algorithms provide a type of unsupervised learning that is especially well suited for the challenges of spoken dialogue systems (SDS) design. SDS are constantly subjected to new environments in the form of new groups of users, and RL provides an approach for automated learning that can adapt to new environments without costly supervision. In this paper, we describe some results from experiments with RL to select prompts for a call routing application. A simulation of the dialogue outcomes were used to experiment with different scenarios and demonstrate how RL can make a system more robust without supervision or developer intervention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dialogue Strategy Optimization with Reinforcement Learning in an AT&T Call Routing Application

Reinforcement Learning (RL) algorithms are particularly well suited to some of the challenges of spoken dialogue systems (SDS) design. RL provides an approach for automated learning that can adapt to new environments without supervision. SDS are constantly subjected to new environments in the form of new groups of users, and developer intervention is costly. In this paper, I will describe some ...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Discriminative Training and Support V Language Call Ro

In natural language call routing, callers are routed to desired departments based on natural spoken responses to an open-ended “How may I direct your call?” prompt. Natural language call classification can be performed using support vector machines (SVMs) or the popular vector-based model used in information retrieval. We recently demonstrate how discriminative training is powerful to improve a...

متن کامل

Call Admission Control and Routing in Integrated Service Networks Using Reinforcement Learning

In integrated service communication networks, an important problem is to exercise call admission control and routing so as to optimally use the network resources. This problem is naturally formulated as a dynamic programming problem, which, however, is too complex to be solved exactly. We use methods of reinforcement learning (RL), together with a decomposition approach, to find call admission ...

متن کامل

On the Relationship between Learning Capability and the Boltzmann-Formula

In this paper a combined use of reinforcement learning and simulated annealing is treated. Most of the simulated annealing methods suggest using heuristic temperature bounds as the basis of annealing. Here a theoretically established approach tailored to reinforcement learning following Softmax action selection policy will be shown. An application example of agent-based routing will also be ill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006